The correct option is
B (−1)2n(2ncn)(1+x)2n=(2n)C0(x)2n+(2n)c1(x)2n−1+⋯⋯+(2n)C2n⋯(1)
(1−x)2n=(2n)C0−(2n)C1(x)2+(2n)C2(x)2+⋯+(2n)C2n(x)2n⋯(2)
Multiplying equation 1 and 2
(1+x)2n⋅(1−x)2n={(2n)c0(x)2n+(2n)c1(x)2n−1+⋯⋯+(2n)c2n}×{(2n)c0−(2n)c1(x)2+……+(2n)c2n(x)2n}
⇒[(1+x)(1−x)]2n=(1−x2)2n Now (1−x2)2n=2n∑r=0(2n)cr(−x2)r=2n∑r=0(−1)r(2n)cr(x)2r
2n∑r=0(−1)r(2n)cr(x)2r={(2n)c0(x)2n+(2n)cL(x)2n−1+⋯+(2n)cn×{(2n)c0−(2n)c1x+⋯+(2n)c2n(x)2n}
Now for coefficient of x2n
putting r = n in LHS of above equation
(−1)n(2n)cn={(2n)c0}2−{(2n)c1}2+{(2n)c2}2+………(−1)n{(2n)c2n}2
So answer option (B).