The correct option is
A True
∣∣
∣
∣∣1logxylogxzlogyx1logyzlogzxlogzy1∣∣
∣
∣∣
We know that logxx=logyy=logzz=1
=∣∣
∣
∣∣logxxlogxylogxzlogyxlogyylogyzlogzxlogzylogzz∣∣
∣
∣∣
C1→C1+C2+C3
=∣∣
∣
∣∣logxx+logxy+logxzlogxylogxzlogyx+logyy+logyzlogyylogyzlogzx+logzy+logzzlogzylogzz∣∣
∣
∣∣
=∣∣
∣
∣∣logxxyzlogxylogxzlogyxyzlogyylogyzlogzxyzlogzylogzz∣∣
∣
∣∣
C1→C1logxxyz
=logxxyz∣∣
∣
∣∣1logxylogxz1logyylogyz1logzylogzz∣∣
∣
∣∣
Using logxx=logyy=logzz=1
=logxxyz∣∣
∣
∣∣1logxylogxz11logyz1logzy1∣∣
∣
∣∣
=logxxyz[1(1−1)−logxy(1−logyz)+logxz(logzy−1)]
=logxxyz[0−logxy+logxylogyz+logxzlogzy−logxz]
=logxxyz[−logxy+logxz+logxy−logxz]
=logxxyz×0=0
Hence the given statement is true.