LHS :
∣∣
∣
∣∣1+a2−b22ab−2b2ab1−a2+b22a2b−2a1−a2−b2∣∣
∣
∣∣
Applying C1→C1−bC3,C2→C2+aC3, we get,
=∣∣
∣
∣∣1+a2+b20−2b01+a2+b22ab(1+a2+b2)−a(1+a2+b2)1−a2−b2∣∣
∣
∣∣
Taking out (1+a2+b2) common from C1 and C2, we get,
=(1+a2+b2)2∣∣
∣∣10−2b012ab−a1−a2−b2∣∣
∣∣
Applying R3→R3−bR1+aR2, we get,
=(1+a2+b2)2∣∣
∣∣10−2b012a001+a2+b2∣∣
∣∣
Expanding along C1, we get,
=(1+a2+b2)2(1+a2+b2)=(1+a2+b2)3 = RHS