wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

f(x)=e5xe2xsin3x,forx0=1,forx=0 at x=0.

Open in App
Solution

We have,

f(x)=e5xe2xsin3x

So,

LHL,

limx1f(x)=limh0f(1h)=limh0e5(1h)e2(1h)sin3(1h)

=limh0e5e5he2e2hsin(33h)

Taking limit and we get,

=e5e2sin3(5h0,2h0,3h0ash0)

Now,

R.H.L

limx1+f(x)=limh0f(1+h)=limh0f(1+h)

=limh0e5(1+h)e2(1+h)sin3(1+h)

=limh0e5.e5he2.e2hsin(3+3h)

Taking limit and we get,

=e5e2sin3(5h0,2h0,3h0ash0)

Now,

f(1)=e5(1)e2(1)sin3(1)

f(1)=e5e2sin3

So,

L.H.L=R.H.L=f(x)

Hence, the function is continouos at x=1

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon