We have,
f(x)=e5x−e2xsin3x
So,
LHL,
limx→1−f(x)=limh→0f(1−h)=limh→0e5(1−h)−e2(1−h)sin3(1−h)
=limh→0e5e5h−e2e2hsin(3−3h)
Taking limit and we get,
=e5−e2sin3(∵5h→0,2h→0,3h→0ash→0)
Now,
R.H.L
limx→1+f(x)=limh→0f(1+h)=limh→0f(1+h)
=limh→0e5(1+h)−e2(1+h)sin3(1+h)
=limh→0e5.e5h−e2.e2hsin(3+3h)
Taking limit and we get,
=e5−e2sin3(∵5h→0,2h→0,3h→0ash→0)
Now,
f(1)=e5(1)−e2(1)sin3(1)
f(1)=e5−e2sin3
So,
L.H.L=R.H.L=f(x)
Hence, the function is continouos at x=1
Hence proved.