Given
(cosA+cosBsinA−sinB)2014+(sinA+sinBcosA−cosB)2014
cosA+cosB=2cos(A+B2)cos(A−B2)
cosA−cosB=−2sin(A+B2)sin(A−B2)
sinA+sinB=2sin(A+B2)cos(A−B2)
sinA−sinB=2cos(A+B2)sin(A−B2)
⟹cosA+cosBsinA−sinB=2cos(A+B2)cos(A−B2)2cos(A+B2)sin(A−B2)
⟹cosA+cosBsinA−sinB=cot(A−B2)
⟹(cosA+cosBsinA−sinB)2014=cot2014(A−B2)⋯(1)
⟹sinA+sinBcosA−cosB=2sin(A+B2)cos(A−B2)−2sin(A+B2)sin(A−B2)
⟹sinA+sinBcosA−cosB=−cot(A−B2)
⟹(sinA+sinBcosA−cosB)2014=cot2014(A−B2)⋯(2)
From (1) , (2)
⟹(cosA+cosBsinA−sinB)2014+(sinA+sinBcosA−cosB)2014=cot2014(A−B2)+cot2014(A−B2)
⟹(cosA+cosBsinA−sinB)2014+(sinA+sinBcosA−cosB)2014=2cot2014(A−B2)