(xax−b)a2−ab+b2×(xbx−c)b2−bc+c2×(xcx−a)c2−ac+a2
On further simplification, we have:
x(a+b)(a2−ab+b2)×x(b+c)(b2−bc+c2)×x(c+a)(c2−ca+a2)
[∵1a−x=ax]
=xa3+b3.xb3+c3.xc3+a3
[∵(x+y)(x2−xy+y2)=x3+y3]
=xa3+b3+b3+c3+a3
=x2(a3+b3+c3)
Hence, simplified value is x2(a3+b3+c3)