wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(1sec2θcos2θ+1cosec2θsin2θ)sin2θcos2θ=1sin2θcos2θ2+sin2θcos2θ

Open in App
Solution

LHS=(1sec2θcos2θ+1cosec2θsin2θ)sin2θcos2θ

=(11cos2θcos2θ+11sin2θsin2θ)sin2θcos2θ

=11cos4θcos2θ+11sin4θsin2θsin2θcos2θ

=(cos2θ(1cos2θ)(1+cos2θ)+sin2θ(1sin2θ)(1+sin2θ))sin2θcos2θ

[Using 1a4=1(a2)2=(1a2)(1+a2)]

=(cos2θsin2θ(1+cos2θ)+sin2θcos2θ(1+sin2))sin2θcos2θ

[Using 1cos2θ=sin2θ and 1sin2θ=cos2θ]

=(cos4θ(1+sin2θ)+sin4θ(1+cos2θ)sin3θcos2θ(1+cos2θ)(1+sin2θ)).sin2θcos2θ

=cos4θ+sin2θcos4θ+sin4θ+cos2θsin4θ(1+cos2θ)(1+sin2θ)

=(cos2θ)2+(sin2θ)2+2cos2θsin2θ2cos2θsin2θ+sin2θcos4θ+cos2θsin4θ(1+cos2θ)(1+sin2θ)

(adding and subtracting 2cos2θsin2θ)

=(cos2θ+sin2θ)22cos2θsin62θ+sin2θcos2θ(cos2θ+sin2θ)1+sin2θ+cos2θ+sin2θcos2θ

=122cos2θsin2θ+sin62θcos2θ.11+1+sin2θcos2θ=1sin2θcos2θ2+sin2θcos2θ=RHS Hence proved.


flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon