The correct option is
A 4k−1Consider
(cosθ−isinθ)m=mC0cosmθ−mC1cosm−1θisinθ+...+mCm(−isinθ)m ....(1)
(cosθ+isinθ)m=mC0cosmθ+mC1cosm−1θisinθ+...+mCm(isinθ)m ....(2)
Adding (1) and (2), we get
2cosmθ=2[mC0cosmθ−mC2cosm−2θsin2θ...] ...(3)
Subtracting (3) and (4), we get
2isinmθ=2i[mC1cosm−1θisinθ−mC3cosm−3θsin3θ...] ....(4)
Adding (3) and (4), we get
cosmθ+sinmθ=[mC0cosmθ+mC1cosm−1θisinθ−mC2cosm−2θsin2θ−mC3cosm−3θsin3θ...]
⇒√2sin(mθ+π4)=[mC0cosmθ+mC1cosm−1θisinθ−mC2cosm−2θsin2θ−mC3cosm−3θsin3θ...]
Putting θ=π4, we get
√2sin((m+1)π4)=12m2[(mC0+mC1−mC2−mC3)+(mC4+mC5−mC6−mC7)+...+(mCm−3+mCm−2−mCm−1−mCm)]
Hence m+1=4k, for given quantity to be 0.
⇒m=4k−1 where k∈N