R.H.S
1−sinθ1+sinθ
=1−sinθ1+sinθ×1−sinθ1−sinθ
=(1−sinθ)21−sin2θ
We know that
cos2θ=1−sin2θ
Therefore,
=(1−sinθ)2cos2θ
=(1cosθ−sinθcosθ)2
=(secθ−tanθ)2
L.H.S
Hence, proved.
Prove the following trigonometric identities:
1−sin θ1+sin θ=(sec θ−tan θ)2
Prove the following
1.(1−sin2A)sec2A=1
2.sec4θ−sec2θ=tan4θ+tan2
3.(secθ−tanθ)2=1−sinθ1+sinθ
4.tanθ+secθ−1tanθ−secθ+=1+sinθcosθ