wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

{xylogxy}dx+{y2x2logxy}dy=0 given that, y(1)=0

Open in App
Solution

Given,

{xylogxy}dx+{y2x2logxy}dy=0

dxdy=⎜ ⎜y2x2logxyxylogxy⎟ ⎟

Let x=vydxdy=v+ydvdy

v+ydvdy=v2logv1vlogv

ydvdy=1vlogv

vlogvdv+1ydy=0

integrating on both sides, we get,

v22logvv24+logy=c

x22y2logxyx24y2+logy=c

given, y(1)=0

122(0)2log10124(0)2+log0=c

c=0

x22y2logxyx24y2+logy=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Inverse of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon