The correct option is A line segment [-2, 2] of the real axis
a|z1|=b|z2|(wherea,b∈R) ...(1)
z1=r1(cosA+isinA)&z2=r2(cosB+isinB)
Since, a|z1|=b|z2|
⇒ar1=br2
let z1=r1(cosA+isinA)=r1cisA&z2=r2(cosB+isinB)=r2cisB
w=(az1bz2)+(bz2az1)=(ar1cisAbr2cisB)+(br2cisBar1cisA)
⇒w=cis(A−B)+cis(−A+B)=2cos(A−B) ...{∵ar1=br2}
Since w is real.
Therefore w lies on a real axis.
Hence, option 'A' is correct.