wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

|ZZ1|2+|ZZ2|2=a represents a real circle [with center Z1+Z22 on the Argand plane.
The prove that 2a|Z1Z2|2.

Open in App
Solution

|ZZ1|2+|ZZ2|2=a
(ZZ1)(¯¯¯¯Z¯¯¯¯Z1)+(ZZ2)(¯¯¯¯Z¯¯¯¯Z2)=a
2Z¯¯¯¯ZZ(¯¯¯¯Z1+¯¯¯¯Z2)¯¯¯¯Z(Z1+Z2)+Z1¯¯¯¯Z1+Z2¯¯¯¯Z2=a
Z¯¯¯¯Z(¯¯¯¯Z1+¯¯¯¯Z22)Z(Z1+Z22)¯¯¯¯Z+Z1¯¯¯¯Z1+Z2¯¯¯¯Z2a2=0 (1)
Equation (1) is of the form of Z¯¯¯¯Z+¯¯¯¯αZ+α¯¯¯¯Z+r=0. Hence, center = -coefficient of ¯¯¯¯Z; which is given by (Z1+Z2)/2. Also, Eq. (1) will represent a real circle if α¯¯¯¯αr>0.
(Z1+Z2)(¯¯¯¯Z1+¯¯¯¯Z2)4Z1¯¯¯¯Z1+Z2¯¯¯z2a2
Z1¯¯¯¯Z+Z1¯¯¯¯Z2+¯¯¯¯Z1Z2+Z2¯¯¯¯Z2>2(Z1¯¯¯¯Z1+Z2¯¯¯¯Z2)2a
2aZ1¯¯¯¯Z1+Z2¯¯¯¯Z2Z1¯¯¯¯Z2Z2¯¯¯¯Z1
=Z1(¯¯¯¯Z1¯¯¯¯Z2)Z2(¯¯¯¯Z1¯¯¯¯Z2)=(Z1Z2)(¯¯¯¯Z1¯¯¯¯Z2)=(Z1Z2)(¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯Z1Z2)
2a|Z1Z2|2
Ans: 1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition and Standard Forms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon