Usetheparameticformoftheparabolax=at2,y=2atwherea=2x=2t2,y=utTheequationoftangentat(2t2,ut)isty=x+2t2Itpassesthrough(2,5)∴9t=2+2t22t2−5t+2=02t2−ut−t+2=02t(t−2)−1(t−2)=0t1=2ort2=12∴Thelengthofthechord=√(t12−t22)+(3t1−2t2)2=√(4−14)2+(4−1)2=√(152)2+32=√225+14416=√3694=3√414