The correct option is
C 4a3p2
y2=4ax
Slope of OP= Slope of OQ
⇒t2=−1t1
∴ P(at2,2at) & Q(at2,−2at)
Let length of focal chord be C.
∴ √(at2−at2)2+(2at+2at)2=C
⇒√a2(t2−1t2)2+(2a)2(t+1t)2=C
⇒√a2(t+1t)2(t−1t)2+(2a)2(t+1t)2=C
⇒
⎷a2(t+1t)2[(t−1t)2+4]=C
⇒√a2(t+1t)2(t+1t2−2+4)=C
⇒√a2(t+1t)2(t+1t)2=C
⇒a(t+1t)2=C⟶(1)
Equation of PQ
y+2at=2at+2a/tat2−at2(x−at2)
⇒y+2at=2t2+2tt4−1t2(x−at2)
⇒y(t4−1)+2at(t4−1)=2(t2+1)t(x−at2)
⇒y(t2+1)(t2−1)+2at(t2+1)(t2−1)=2t(t2+1)(x−at2)
⇒y(t2−1)+2at(t2−1)=2t(x−at2)
⇒y(t2−1)+2at(t2−1)=2tx−2att2
⇒2tx−y(t2−1)−2att2−2at2t+2at=0
⇒2tx−y(t2−1)−2at=0
∴ Equation of focal chord is 2tx−y(t2−1)−2at=0
Q=|A1x1+B1y1+C1|√A21+B21 (0,0)
∴ P=∣∣
∣
∣∣−2at√(2t)2+(t2−1)2∣∣
∣
∣∣=2at√4t2+t4+1−2t2
=2at√t4+1+2t2=2at√(t2+1)2=2att2+1
⇒t2+1t=2ap⟶(2)
⇒t+1t=2aP
∴ From (1), we get,
a(2aP)2=C
⇒C=4a2P2.a
⇒C=4a3P2
∴ Length of focal chord is 4a3P2.