The correct option is A 2a√27
Let AB be a normal chord where A≡(at2,2at),B≡(at21,2at1).
We have, t1=−t−2t
Now, AB2=[a2(t2−t21)]2+4a2(t−t1)2
=a2(t−t1)2[(t+t1)2+4]
=a2(t+t+2t)2(4t2+4)
=16a2(1+t2)t4
⇒d(AB)2dt=16a2(t4[3(1+r2)2⋅2t]−(1+t2)3⋅4t3t8)
=32a2(1+t2)(3t2−2−2t2t5)
=d2×32(1+t2)2t5(t2−2)
For d(AB)2dt=0⇒t=√2 for which (AB)2 is minimum.
Thus, ABmin=4a2(1+2)3/2=2a√27 units