Let 0 < A,B < π2 satisfying the equation 3sin2A+2sin2B=1 and 3sin2A - 2sin2B = 0 then A + 2B is equal to
π/2
3sin2A=1−2sin2B=cos2B
Now cos(A+ 2B) = cosA cos2B - sinA sin2B
= 3cosA.sin2A−32.sinAsin2A
= 3cosA.sin2A−3sin2A.cosA=0
⇒ A + 2B = π2or3π2
Given that 0 < A < π2 and 0 < B < π2
⇒ 0 < A + 2B < π+π2 Hence A + 2B = π2