Let 0≤α≤π2 and x=Xcosα+Ysinα,y=Xsinα−Ycosα. lf x2+4xy+y2=aX2+bY2, then
A
α=π4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
α=π8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a+b=2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
a+b=4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Aα=π4 Ca+b=2 x2+y2=X2+Y2
xy=(X2−Y2)sinα⋅cosα−XY(cos2α−sin2α) ⇒4xy=(X2−Y2)2sin2α−4XYcos2α ∴x2+y2+4xy=X2(1+2sin2α)+Y2(1−2sin2α)−4XYcos2α comparing with x2+y2+4xy=aX2+bY2 we get cos2α=0⇒α=π4 a=1+2sin2α=3 b=1−2sin2α=−1 ⇒a+b=2