The correct option is D sec(y−z)=√6−√2
Given, sinxsinycosz=12√2 …(1)
sin2xsin3ycosz=14√2 …(2)
sinxsin4ycos2z=18 …(3)
Now, (1)×(2)(3)
⇒sin3xsin4ycos2zsinx⋅sin4y=12⇒sin2x⋅cos2z=12 …(4)
Now, (1)2(4)
⇒sin2xsin2ycos2zsin2xcos2z=18⋅21⇒sin2y=14⇒siny=12 [∵y∈(0,π2)]⇒y=π6
From equation (1),
sinxcosz=1√2 …(5)
and from equation (2),
sin2xcosz=√2 …(6)
From (5)×(6),
sinx=1⇒x=π2
From equation (5),
z=π4
∴siny=12,cosz=1√2,sinx=1
and x=π2;y=π6;z=π4
sinx+siny=1+12=32
cos(x−y)=cosπ3=12
x+y+z=11π12tan11π12=tan(π−π12)=−tanπ12=√3−2sec(y−z)=secπ12
cos(π4−π6)=cosπ6cosπ4+sinπ6sinπ4⇒cos(π12)=√32⋅1√2+12⋅1√2⇒cos(π12)=√3+12√2⇒sec(π12)=2√2√3+1×√3−1√3−1⇒sec(π12)=√6−√2