Since maximum value of cos−1x in [0,1]=π/2,k∑r=1cos−1βr=kπ/2 is possible if and only if each cos−1βr=π/2⇔βr=0
A=k∑r=1(βr)r=0
Thus limx→0(1+x2)1/3−(1−2x)1/4x+x2
=limx→0(1+x2/3+0(x4))−(1−x/2+0(x3))x(1+x)
=limx→01/2+x/3+0(x2)1+x=1/2. Thus the reqd. limit is 249.