The correct options are
A k2<5
B tan(x1+x2)=2
C for k=2,x1=π4
D for k=1,x2=0
(1+k)tan2x−4tanx+k−1=0
For real and distinct roots, D>0
⇒k2<5
tanx1+tanx2=4k+1 ⋯(1)
tanx1⋅tanx2=k−1k+1 ⋯(2)
tan(x1+x2)=tanx1+tanx21−tanx1⋅tanx2
⇒tan(x1+x2)=2
Now, (tanx1−tanx2)2=(tanx1+tanx2)2−4tanx1⋅tanx2
⇒tanx1−tanx2=2√5−k2k+1
If k=2, tanx1−tanx2=23 ⋯(3)
(1)+(3)⇒tanx1=1
∴x1=π4
If k=1, tanx1−tanx2=2 ⋯(4)
(1)−(4)⇒tanx2=0
∴x2=0