Given,
2b=(m+1)a …… (1)
And 4mcos2a=(m−1)(m+3) ……. (2)
∵ cosA=b2+c2−a22bc
From equation (1) cosA=((m+1)a2)2+c2−a2(m+1)ac
(m+1)accosA=(m+1)2.a24+c2−a2
m×accosA+a.c.cosA=((m+1)24)a2−a2+c2
m×ac cosA+accosA=((m+1)2−22)a24+c2
m×ac cosA+accosA=((m−1)(m+3))a24+c2
From equation (2)
m×ac×cosA+accosA=(4.m.cos2A)a24+c2
m.a.c.cosA+a.c.cosA=(m.cos2A)a2+c2
m.a.c.cosA+a.c.cosA−a2.m.cos2A−c2=0
m.a.c.cosA−a2mcos2A+ac.cosA−c2=0
a.m.cosA(c−acosA)−c(c−acosA)=0
(c−acosA)(am.cosA−c)=0
When,
c−acosA=0
c=acosA
When,
am.cosA−c=0
c=m.acosA
Hence proved there are two values of third side one of which is m times of the other.