wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let 1<m<3 In a triangle ABC if 2b=(m+1)a and cosA=12(m1)(m+3)m.
Prove that there are two values of the third side one of which is m times the other.

Open in App
Solution

Given,

2b=(m+1)a …… (1)

And 4mcos2a=(m1)(m+3) ……. (2)


cosA=b2+c2a22bc


From equation (1) cosA=((m+1)a2)2+c2a2(m+1)ac

(m+1)accosA=(m+1)2.a24+c2a2

m×accosA+a.c.cosA=((m+1)24)a2a2+c2

m×ac cosA+accosA=((m+1)222)a24+c2

m×ac cosA+accosA=((m1)(m+3))a24+c2

From equation (2)

m×ac×cosA+accosA=(4.m.cos2A)a24+c2

m.a.c.cosA+a.c.cosA=(m.cos2A)a2+c2

m.a.c.cosA+a.c.cosAa2.m.cos2Ac2=0

m.a.c.cosAa2mcos2A+ac.cosAc2=0

a.m.cosA(cacosA)c(cacosA)=0

(cacosA)(am.cosAc)=0

When,

cacosA=0

c=acosA

When,

am.cosAc=0

c=m.acosA

Hence proved there are two values of third side one of which is m times of the other.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
"If Two Sides of a Triangle are Unequal, Then the Angle Opposite to the Greater Side is Greater
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon