Let (1+x2)2(1+x)n=n+4∑k=0akxk. If a1,a2,a3 are in arithmetic progression, then the sum of all the possible values of n is
Open in App
Solution
L.H.S.=(1+2x2+x4)(nC0+nC1x+nC2x2+nC3x3+⋯)R.H.S.=a0+a1x+a2x2+⋯∴a1=nC1,a2=nC2+2⋅nC0 and a3=nC3+2⋅nC1∵a1,a2 and a3 are in arithmetic progression,∴2a2=a1+a3⇒2(n(n−1)2+2)=n+n(n−1)(n−2)6+2nThe above equation is true for n=2,3,4∴Required Sum=2+3+4=9.