Let (1+x)n=n∑r=0=Crxr and C1C0+2C2C1+3C8C2+...+nCnCn−1=1kn(n+1).Then, the value of k is
If (1+x)n=C0+C1x+C2x2+.......+Cnxn, then C1C0+2C2C1+3C3C2+........+nCnCn−1=