The correct option is B (321−121)
(1+x+x2)20(2x+1)=a0+a1x1+a2x2+..........+a41x41
Integrating the equation w.r.t. x,
1∫0(1+x+x2)20(2x+1) dx=1∫0a0+a1x1+a2x2+..........+a41x41 dx=a01+a12+a23+............a4142
Finding the value of integration,
I=1∫0(1+x+x2)20(2x+1) dx
Let (1+x+x2)=t⇒(2x+1)dx=dt
I=3∫1t20 dt⇒I=[t2121]31=321−121