wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let
(1+x+x2)2014=a0+a1x+a2x2+a3x3+....+a4028x4028
and let
A=a0a3+a6.....+a4026,
B=a1a2+a7.....+a4027,
C=a2a5+a8.....+a4028
Then

A
|A|=|B|>|C|
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
|A|=|B|<|C|
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
|A|=|C|>|B|
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
|A|=|C|<|B|
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D |A|=|C|<|B|
(1+x+x2)2014=a0+a1x+a2x2+...+a4028x4028

substituting x=1,ω,ω2 where ω=ei2π/3

1=a0a1+a2a3+a4a5+a6...+a4028 ...........(i)

(1ω+ω2)2014=a0a1ω+a2ω2a3+a4ωa5ω2+a6...+a4028ω2 .........(ii)

(1ω2+ω4)2014=a0a1ω2+a2ωa3+a4ω2a5ω+a6...+a4028ω .........(iii)

(i)+(ii)+(iii)a0a3+a6...+a4026=A=1+22014(ω+ω2)3
|A|=2201413

(i)+ω2(ii)+ω(iii)a1a4+a7...+a4027=B=1+220153

(i)+ω(ii)+ω2(iii)a2a5+a8...+a4028=C=1220143

|A| = |C| < |B|


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Polynomial and Its General Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon