Let 2sin2x+3sinx−2>0 and x2−x−2<0 (x is measured in radians). Then x lies in the interval
(π6,5π6)
(−1,5π6)
(−1,2)
(π6,2)
2sin2x+3sinx−2>0 (2sinx−1)(sinx+2)>0 ⇒2sinx−1>0[∵−1≤sinx≤1] ⇒sinx>12⇒x∈(π6,5π6)(i) Also x2−x−2<0