Given (2x2+3x+4)10=20∑r=0arxr ⋯(1)
Replace x by 2x in above, we get
210(2x2+3x+4)10x20=20∑r=0ar2rxr
⇒21020∑r=0arxr=20∑r=0ar2rx(20−r) (from eq.(1))
Now, comparing coefficient of x7 from both sides
(take r=7 in L.H.S. and r=13 in R.H.S.)
210a7=a13213⇒a7a13=23=8