wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let 2x+3y+4z=9, x, y, z>0, then the maximum value of (1+x)2(2+y)3(4+z)4 is

A
29
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
49
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(113)9
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(116)9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C (113)9
Let us consider, f=(1+x)2(2+y)3(4+z)4 and g=2x+3y+4z=9

We know that,
Δf=λΔg

2[(1+x)(2+y)3(4+z)4,3(1+x)2(2+y)2(4+z)4,4(1+x)2(2+y)3(4+z)3]=λ[2,3,4]

2(1+x)(2+y)3(4+z)4=2λ
3(1+x)2(2+y)2(4+z)4=3λ

4(1+x)2(2+y)3(4+z)3=4λ

λ=(1+x)(2+y)3(4+z)4=(1+x)2(2+y)2(4+z)4

=(1+x)2(2+y)3(4+z)3

Here, x,y,z>0

On solving we get, (2+y)(4+z)=(1+x)(4+z)=(1+x)(2+y)

(2+y)(4+z)=(1+x)(4+z)and(1+x)(4+z)=(1+x)(2+y)

2+y=1+x,4+z=2+y

x=1+y,z=y2

by substituting the x and z value in g we get 2(1+y)+3y+4(y2)=9

Finally , (x,y,z)=(83,53,13)

f(83,53,13)
And the maximum value is (113)9



flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon