Let A(0,−1,1),B(0,0,1),C(1,0,1) are the vertices of a ΔABC. If R and r denotes the circumradius and inradius of ΔABC, then rR has value equal to
A
tan3π8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
cot3π8
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
tanπ12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cotπ12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bcot3π8 −−→AB=(0,1,0)−−→BC=(1,0,0)−−→CA=(−1,−1,0)−−→AB.−−→BC=∣∣∣−−→AB∣∣∣.∣∣∣−−→BC∣∣∣cosθ0=cosθθ=π2tan(90−452)=cot452=cot22.5∘sin222.5=1−cos452=1−1/√22=√2−12tan222.5=√2−1√2+1=(√2−1)2tan22.5=√2−1Now2R=AC=√1+1=√2R=1√2|AB|=c=1|BC|=a=1|AC|=b=√2A=12×|AB|×|BC|=12r=As=12s=12+√2rR=√22+√2=√22π(2−√2)=√2−1=tan22.5=tan452×π18=tanπ2and,cot(π2−π8)=cot3π8