Let A0A1A2A3A4A5 be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments A0A1, A0A2 and A0A4 is
(c) Each triangle is an equilateral triangle
Hence A0A1 = 1
A0A20 = A0A21 + A1A20 - 2A0A1A1A2 cos 120∘
= 1 + 1 - 2.1.1(-12) = 3
⇒ A0A2 = √3 = A0A4
∴ A0A1 × A0A2 × A0A4 = 1.√3.√3