Let a > 0 be a real number. Then the limit limx→2ax+a3−x−(a2+a)a3−x−ax2 is
limx→2ax+a3−x−(a2+a)a3−x−ax2limx→2(ax−a)(ax2−a)(ax2+a)(a−ax2)(a2+ax+ax2.a)limx→2−(ax−a)(ax2+a)a2+ax+ax2.a=23(1−a)
Let a1,a2,....an be fixed real numbers and let
f(x)=(x−a1)(x−a2)(x−a3)...(x−an).
Find limx→a1f(x),
If a≠ a1,a2,...an,compute limx→af(x)