The correct option is C 4d4a(a+d)2(a+2d)3(a+3d)2(a+4d)
Given, a > 0, d > 0 and let
Δ=∣∣
∣
∣
∣
∣∣1a1a(a+d)1(a+d)(a+2d)1(a+d)1(a+d)(a+2d)1(a+2d)(a+3d)1(a+2d)1(a+2d)(a+3d)1(a+3d)(a+4d)∣∣
∣
∣
∣
∣∣
Taking 1a(a+d)(a+2d) common from R1.
1(a+d)(a+2d)(a+3d) from R2
1(a+2d)(a+3d)(a+4d) from R3
⇒ Δ=1a(a+d)2(a+2d)3(a+3d)2(a+4d)
where, Δ′=∣∣
∣
∣∣(a+d)(a+2d)(a+2d)a(a+2d)(a+3d)(a+3d)(a+d)(a+3d)(a+4d)(a+4d)(a+2d)∣∣
∣
∣∣
Applying R2→R2−R1,R3→R3−R2
⇒ Δ′=∣∣
∣
∣∣(a+d)(a+2d)(a+2d)a(a+2d)(2d)dd(a+3d)(2d)dd∣∣
∣
∣∣
Applying R3→R3−R2
Δ′=∣∣
∣
∣∣(a+d)(a+2d)(a+2d)a(a+2d)2ddd2d200∣∣
∣
∣∣
Expanding along R3, we get
Δ′=2d2∣∣∣a+2dadd∣∣∣Δ′=(2d2)(d)(a+2d−a)=4d4∴ Δ=4d4a(a+d)2(a+2d)3(a+3d)2(a+4d)