Let a0=52 and ak=a2k−1−2 for k≥1, then the value of ∞Πk=0(1−1ak) is
37
a0=52=22+12a1=a20−2=174=24+122Let an=x4+1x2;x=22n−1∴∞πk=0(1−1ak)=limn→∞ nΠk=0(ak−1ak)=limn→∞a0−1a0.a1−1a1.....an−1an=limn→∞22−2+122+1.42−4+142+1.......(x2−x+1x2+1)=limn→∞22−122+2+1×x4+x2+1x4−1=37