A×B={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)}A×C={(1,5),(1,6),(2,5),(2,6)} ∴R.H.S.=(A×B)∩(A×C)=ϕ∴L.H.S=R.H.SHence
A×(B∩C)=(A×B)∩(A×C)
(ii) To verify: A×C is a subset of B×D
A×C={(1,5),(1,6),(2,5),(2,6)}
B×D={(1,5),(1,6),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,5),(3,6),(3,7),
(3,8),(4,5),(4,6),(4,7),(4,8)}
We can observe that all the elements of set A×C are the elements of set B×D
Therefore A×C is a subset of B×D