The correct option is D 6
Given that a1,a2,a3,...,a10 are in A.P.
Let a10=a1+9d
⇒3=2+9d
⇒d=19
So, a4=a1+3d
⇒a4=2+3(19)
⇒a4=73
Now, given that h1,h2,...,h10 are in H.P
⇒1h1,1h2,...,1h10 are in A.P
Let, 1h10=1h1+9d
⇒13=12+9d
⇒13−12=9d
⇒9d=−16
⇒d=−154
So, 1h7=1h1+6d
⇒1h7=12+6(−154)
⇒1h7=12−19
⇒1h7=718
⇒h7=187
Consider, a4h7=73⋅187
⇒a4h7=6