Let a1,a2,a3,.... be terms of an A.P. If a1+a2+....+apa1+a2+....+aq=p2q2, p≠q, then a6a21 equals
A
27
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1141
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
4111
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
72
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C1141 a1+a2+....+apa1+a2+.....+aq=p2q2⇒p2[2a1+(p−1)d]q2[2a1+(q−1)d]=p2q2⇒2a1+(p−1)d2a1+(q−1)d=pq⇒[2a1+(p−1)d]q=p[2a1+(q−1)d]⇒2a1+(p−1)d2a1+(q−1)d=pq⇒[2a1+(p−1)d]q=p[2a1+(q−1)d]⇒2a1(q−p)=d[(q−1)p−(p−1)q]⇒2a1(q−p)=d(q−p)⇒2a1=d⇒a6a21=a1+5da1+20d=a1+10a1a2+40a1⇒a6a21=1141