Let a1,a2,a3,... be the terms of an AP. If a1+a2+a3+...+apa1+a2+a3+...+aq=p2q2, p≠q, find the value of a6a21.
Given, a1,a2,a3,... are in AP.
and a1+a2+a3+...+apa1+a2+a3+...+aq=p2q2
⇒ p/2[2a1+(p−1)d]q/2[2a1+(q−1)d]=p2q2
[∵ Sn=n2{2a+(n−1)d}]
⇒ 2a1+(p−1)d2a1+(q−1)d=pq
⇒ 2a1q+pqd−qd=2a1p+pqd−pd
⇒ 2a1q−qd−2a1p+pd=0
⇒ 2a1 p−2a1q−pd+qd=0
⇒ 2a1(p−q)−d(p−q)=0
⇒ (2a1−d)(p−q)=0
⇒ 2a1−d=0 [∵ p≠q]
⇒ d=2a1
Now, a6a21=a1+5da1+20d=a1+10a1a1+40a1=1141