Let a1,a2,a3,… be an A.P. If a1+a2+⋯+a10a1+a2+⋯+ap=100p2,p≠10, then a11a10 is equal to
A
1921
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
100121
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2119
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
121100
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C2119 ∵a1,a2,a3,.... are in A.P.
Let its common difference be d. ∴a1+a2+....+a10a1+a2+....+ap=100p2 ⇒102 { 2a1 + 9d}p2{2a1+(p−1)d}=100p2 ⇒2a1+9d2a1+(p−1)d=10p ⇒2pa1+9pd=20a1+10(p−1)d ⇒(2p−20)a1=(p−10)d ⇒2a1(p−10)−d(p−10)=0 ∴2a1=d∵p≠10 ∴a11a10=a1+10da1+9d=a1+20a1a1+18a1=2119