ak=2ak−1−ak−2
ak+ak−2=2ak−1
⇒a1,a2,a3,…,a11 are in A.P.
Let the common difference be d
a1=15,a2=15+d,a3=15+2d,…,a11=15+10d
Now, (a1)2+(a2)2+⋯+(a11)211
=(15)2+(15+d)2+(15+2d)2+⋯+(15+10d)211=90
⇒(15)2⋅11+30d(1+2+⋯+10)+d2(12+22+⋯+102)11=90
⇒35d2+150d+225=90
⇒35d2+150d+135=0
⇒7d2+30d+27=0
⇒7d2+21d+9d+27=0
⇒(d+3)(7d+9)=0
⇒d=−3,−97
Since a2<272, d≠−97
∴d=−3
Hence, a5=15+4(−3)=3