wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let a1,a2,a3,,a11 be real numbers satisfying a1=15, 272a2>0 and ak=2ak1ak2 for k=3,4,,11. If (a1)2+(a2)2++(a11)211=90, then a5 is

Open in App
Solution

ak=2ak1ak2
ak+ak2=2ak1
a1,a2,a3,,a11 are in A.P.
Let the common difference be d
a1=15,a2=15+d,a3=15+2d,,a11=15+10d

Now, (a1)2+(a2)2++(a11)211
=(15)2+(15+d)2+(15+2d)2++(15+10d)211=90
(15)211+30d(1+2++10)+d2(12+22++102)11=90
35d2+150d+225=90
35d2+150d+135=0
7d2+30d+27=0
7d2+21d+9d+27=0
(d+3)(7d+9)=0
d=3,97
Since a2<272, d97
d=3

Hence, a5=15+4(3)=3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon