a1,a2,a3…,a9 are in H.P.
an=1a+(n−1)d
a4=1a+3d=5
⇒a+3d=15 ⋯(1)
Also, a5=1a+4d=4
⇒a+4d=14 ⋯(2)
Solving (1) and (2), we get
a=d=120
∴an=20n⇒1an=n20
Now, let Δ=∣∣
∣
∣∣1/a11/a21/a31/a41/a51/a61/a71/a81/a9∣∣
∣
∣∣
=∣∣
∣
∣
∣
∣
∣∣120220320420520620720820920∣∣
∣
∣
∣
∣
∣∣
Δ=1(20)3∣∣
∣∣123456789∣∣
∣∣
Applying R3→R3−R2, then R2→R2−R1, we get
Δ=1(20)3∣∣
∣∣123333333∣∣
∣∣=0