Let a1,a2…a3n be an arithmetic progression with a1=3 and a2=7. If a1+a2+…+a3n=1830, then what is the smallest positive integer m such that m(a1+a2+…+an)>1830?
If a1,a2,a3,…,an are in arithmetic progression, where a1>0 for all i. Prove that 1√a1+√a2+1√a2+√a3+…+1√an−1+√an=n−1√a1+√an
The nth term (general term) of an arithmetic progression, a1, a2, a3, …, an, … where a2 –a1 = a3 – a2 = …. = d is: