Let a1=p and b1=q where p and q are positive quantities. Define an=pbn−1 and bn=qbn−1, for even n>1 and an=pan−1,bn=qan−1, for odd n>1. If p=13 and q=23, then what is the smallest odd n such that an+bn<0.01?
If p=13 and q=23, then p+q=1 and pq=29
a1+b1=p+q=1
a3+b3=p2q+pq2=pq(p+q)=29.
a5+b5=p3q2+p2q3=p2q2(p+q)=481.
So, in general, for odd 'n' we can write -
an+bn=(29)(n−12); we need to find least value of n such that (29)(n−12)<0.01.
Using the options given, if n=7, a7+b7=(29)3>0.01; if n=9, a9+b9=(29)4<0.01.