Reflexivity:Let (a,b) be an arbitrary element of A×A.Then,(a,b)ϵA×A⇒a,b ϵA.
So,a+b=b+a⇒(a,b)R(a,b)
Thus,(a,b)R(a,b)∀(a,b)ϵA×A.Hence R is reflexive.
Symmetry:Let a,b,c,dϵA×A be such that (a,b) R (c,d).
Then,a+d=b+c⇒c+b=d+a⇒(c,d)R(a,b).
Thus, (a,b)R(c,d)⇒(c,d)R(a,b)∀a,b,c,dϵA×A. Hence R is symmetric.
Transitivity:Let a,b,c,d,e,fϵA×A be such that (a,b) R (c,d) and (c,d) R (e,f).
Then,a+d=b+c and c+f=d+e⇒(a+d)+(c+f)=(b+c)+(d+e)⇒a+f=b+e
⇒(a,b)R(e,f).That is ,(a,b) R (c,d) and (c,d) R (e,f) ⇒ (a,b) R (e,f) ∀ a,b,c,d,e,f ϵ A× A. Hence R is Transitive.
Since R is reflexive,symmetric and transitive so,R is an equivalence relation as well.
For the equivalence class of [(2,5)], we need to find (a,b) s.t. (a,b)R(2,5)⇒a+5=b+2⇒b−a=3.
So,[(2,5)]={(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)}.