Let A={1,2,3,…,40} and R be an equivalence relation on A×A defined by (a,b)R(c,d) if and only if ad=bc. If n is the number of elements in the equivalence class [(1,3)] and m is the number of elements in the equivalence class [(1,4)], then the value of m+n is
Open in App
Solution
R is defined as (a,b)R(c,d) iff ad=bc
Here, (a,b)R(1,3) iff 3a=b×1 ⇒ba=3 ∴[(1,3)]={(1,3),(2,6),…,(13,39)} n=13
And (a,b)R(1,4) iff 4a=b×1 ⇒ba=4 ∴[(1,4)]={(1,4),(2,8),…,(10,40)} m=10 ∴m+n=13+10=23