wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let A= {1,2,3,4,...14}. Define a relation R from A to A by R= {(x,y):3xy=0,where x,y ϵ A}. Write down its domain, co-domain, and range.

Open in App
Solution

Given
A= {1,2,3,4,...14}
R is relation from A to A
R= {(x,y):3xy=0,where x,y ϵ A}

Find relation from A to A in roster form
R= {(x,y):3xy=0,where x,y ϵ A}
Put x=1,2,3,4 we get,
y=3,6,9,12 respectively
So, R= {(1,3),(2,6),(3,9),(4,12)}

Domain of R
The domain of R is the set of all first elements of ordered pairs in relation R,
Hence, domain of R= {1,2,3,4}

Co-domain of R
If a relation is defined from PQ, then whole set Q is the co-domain of that relation.
Hence, co-domain of R=A= {1,2,3,...14}

Range of R
The range of R is set of second elements of ordered pairs in relation R.
Hence, range of R is {3,6,9,12}.

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon