Let A = {1,2,4,5}, B = {2,3,5,6} C = {4,5,6,7}. Verify the following identities :
(i)A∪(B∩C)=(A∪B)∩(A∪C)
(ii) A∩(B∪C)=(A∩B)∪(A∩C)
(iii) A∩(B−C)=(A∩B)−(A∩C)
(iv) A−(B∪C)=(A−B)∩(A−C)
(v) A−(B∩C)=(A−B)∪(A−C)
(vi) A∩(BΔC)=(A∩B)Δ(A∩C)
(i) A = {1,2,4,5}, B = {2,3,5,6} and C = {4,5,6,7}
We will denote left hand side by LHS and right hand side by RHS
LHS = A∪(B∩C)
Now,
B∩C = {2,3,5,6} ∩ {4,5,6,7}
= {5,6}
∴A∪(B∩C) = {1,2,4,5,6} ∪ {5,6}
= {1,2,4,5,6}
RHS = (A∪B)∩(A∪C)
Now,
A∪B = {1,2,4,5} ∪ {2,3,5,6}
= {1,2,3,4,5,6}
and A∪C = {1,2,4,5} ∪ {4,5,6,7}
= {1,2,4,5,6,7}
∴ (A∪B)∩(A∪C) = {1,2,3,4,5,6} ∩ {1,2,4,5,6,7}
= {1,2,4,5,6}
Hence LHS = RHS proved.
(ii) LHS = A∩(B∪C)
Now,
B∪C = {2,3,5,6} ∪ {4,5,6,7}
= {2,3,4,5,6,7}
∴A∩(B∪C) = {1,2,4,5} ∩ {2,3,4,5,6,7}
= {2,4,5}
RHS = (A∩B)∪(A∩C)
Now,
A∩B = {1,2,4,5} ∩ {2,3,5,6}
= {2,5}
and A∩C = {1,2,4,5} ∩ {4,5,6,7}
= {4,5}
∴(A∩B)∪(A∩C) = {2,5} ∪ {4,5}
= {2,4,5}
Hence, LHS = RHS proved.
(iii) LHS = A∩(B−C)
Now,
B- C = {x ϵ B:x/ϵ C}
= {2,3}
∴A∩(B−C) = {1,2,4,5} ∩ {2, 3}
= {2}
RHS = (A∩B)−(A∩C)
Now,
A∩B = {1,2,4,5} ∩ {2,3,5,6}
= {2,5}
and A∩C = {1,2,4,5} ∩ {4,5,6,7}
= {4,5}
∴(A∩B)−(A∩C)= {2,5} - {4,5}
= [xϵ {2,5} : x/ϵ {4,5}]
= {2}
Hence, LHS = RHS proved.
(iv) LHS = A−(B∪C)
Now,
B∪C = {2,3,5,6} ∪ {4,5,6,7}
= {2,3,4,5,6,7}
∴A−(B∪C) = {x ϵA :x/ϵ(B ∪C)}
= {1}
RHS = (A−B)∪(A−C)
Now,
A - B = {x ϵ A:x /ϵ B}
= {1,4}
and A - C = {x ϵ A:A /ϵ C}
= {1,2}
∴(A−B)∩(A−C)= {1,4} ∩ {1,2}
= {1}
Hence, LHS = RHS proved.
(v) LHS = A−(B∩C)
Now,
B∩C= {5,6} [from (i)]
∴A−(B∩C)= {x ϵ A:x /ϵ (B∩C)}
= {1,2,4}
RHS = (A−B)∪(A−C)
Now,
A- B = {x ϵ A:x /ϵ B}
= {1,4}
and A- C = {x ϵ A:x /ϵ C}
= {1,2}
∴(A−B)∪(A−C)= {1,4} ∪ {1,2}
= {1,2,4}
Hence, LHS = RHS proved.
(vi) The symmetric difference of two sets A and B to be denoted by AΔB is defined as
AδB=(A−B)∪(B−A)
The venn diagram representing AΔB may be shown as follows.
LHS = A∩(B−C)∪(C−B)
B- C = {2,3} [from (i)]
C- B = {x ϵ Cx /ϵ b}
={4,7}
∴BΔC = {2,3} ∪ {4, 7}
= {2, 3, 4, 7}
A∩(BΔC) = {1,2,4,5} ∩ {2,3,4,7}
= {2,4}
RHS = (A∩B)Δ(A∩C)
Now,
A∩B = {2,5} [from (i)]
and A∩C = {4,5} [from (ii)]
∴(A∩B)Δ(A∩C) = { (A∩B)−(A∩C)∪(A∩C)−(A∩B) }
= ({2,5)-{4,5} ∪ {4,5}- {2,5})
= {2} ∪ {4}
= {2,4}
Hence LHS = RHS Proved.