(a) Given:
f (x) = x2 − 2x − 3
f (−2) = (− 2)2 − 2(− 2) − 3
= 4 + 4 – 3
= 8 − 3 = 5
f (−1) = (−1)2 − 2(−1) − 3
= 1+ 2 − 3
= 3 − 3 = 0
f (0) = (0)2 − 2(0) − 3
= 0 − 0 − 3
= − 3
f (1) = (1)2 − 2(1) − 3
= 1 − 2 − 3
=1 − 5 = − 4
f (2) = (2)2 – 2(2) − 3
= 4 − 4 – 3
= 4 – 7 = − 3
Thus, range of f(A) = (− 4, − 3, 0, 5).
(b) Let x be the pre-image of 6.
Then,
f(6) = x2 − 2x − 3 = 6
⇒ x2 − 2x − 9 = 0
⇒
Since , there is no pre-image of 6.
Let x be the pre-image of 3. Then,
f(− 3) ⇒ x2 − 2x − 3 = − 3
⇒ x2 − 2x = 0
⇒ x = 0, 2
Clearly . So, 0 and 2 are pre-images of −3.
Let x be the pre-image of 5. Then,
f(5) ⇒ x2 − 2x − 3 = 5
⇒ x2 − 2x − 8 = 0
⇒ (x − 4) (x + 2) = 0 ⇒ x = 4, − 2
Since , − 2 is the pre-image of 5.
Hence,
pre-images of 6, − 3 and 5 are respectively.