The correct option is
C 9Given the vertices of quadrilateral ABCD
A(3,2),B((−4,1),C(−3,1) and D(2,−4)
Let the midpoint be denoted as P, Q, R and S of AB<BC<CD and DA respectively.
Mid point of AB,P =(3−42,2+12)=(−12,32)
Mid point of BC,Q =(−4−32,1+12)=(−72,1)
Mid point of CD,R =(−3+22,1−42)=(−12,−32)
Mid point of DA, S =(3+22,2−42)=(52,−1)
Area of a quadrilateral or polygon is given by the formula,
12|(x1y2−y1x2)+(x2y3−y2x3)+...+(xny1−ynx1)|=12∣∣∣[(−12−×1)−(−72×32)]+[(−72×−32)−(−12×1)]+[(−12×−1)−(52×−32)]+[(52×32)−(−1×−12)]∣∣∣=12∣∣∣[−12+214]+[214+12]+[12+154]+[154−12]∣∣∣=12∣∣∣−2+21+21+2+2+15+15+−24∣∣∣=9