Let A(3,0,−1),B(2,10,6) and C(1,2,1) be the vertices of a triangle and M be the mid point of AC. If G divides BM in the in the ratio, 2:1, then cos(∠GOA), (O being the origin) is equal to :
Given:
A(3,0,−1),B(2,10,6) and C(1,2,1) are the vertices of a triangle ABC.
G divided BM in 2:1 and M is mid point of AC
⇒G is centroid of the given triangle.
⇒G=(3+2+13, 0+10+23, −1+6+13)
⇒G=(2, 4, 2) ---(1)
If θ be the angle ∠GOA then
−−→OA⋅−−→OG=|−−→OA|⋅|−−→OG|⋅cosθ ---(2)
Here, −−→OA=(3^i−0^i)+(0^j−0^j)+(−^k−0^k)
⇒−−→OA=3^i−^k --(3)
−−→OG=(2^i−0^i)+(4^j−0^j)+(2^k−0^k)
⇒−−→OG=2^i+4^i+2^k--(4)
Now, from (2)
−−→OA⋅−−→OG=|−−→OA|⋅|−−→OG|⋅cosθ
⇒(3^i−^k)⋅(2^i+5^j+2^k)=√32+(−1)2⋅√22+42+22cosθ
⇒(6+0−2)=√10⋅√24cosθ
⇒4=√2.√5.2.√3.√2.cosθ
⇒4=4√15cosθ
⇒cosθ=1√15
Hence, Option A is correct.