Given, a=41/401−1
⇒1+a=41/401
bn=nC1+nC2⋅a+nC3⋅a2+⋯+nCn⋅an−1
=1a[nC1⋅a+nC2⋅a2+nC3⋅a3+⋯+nCn⋅an] =1a[(1+a)n−1]
i.e., bn=1a[4n/401−1]
Now, b2006=1a[(41/401)2006−1]
and b2005=1a[(41/401)2005−1]
∴b2006−b2005=1a[(41/401)2006−(41/401)2005]
=1a(41/401)2005[41/401−1]=a
=42005/401=45≡4k
∴k=5